Vol.02 No.05.

International Journal of Web of Multidisciplinary Studies

(Peer-Reviewed, Open Access, Fully Refereed International Journal) [JWOS
. .s [internationalbiournaifofiweplot
website: www.ijwos.com E-ISSN : 3049-2424 _wisdimysus

DOLI:

Parallelism in OOP: Leveraging Object-Oriented Concepts for Multicore

Processing
Hritik Kolhapuri®!

*Widya Vikas Education Trust, Universal College of Engineering, Kaman Bhiwandi Road, Survey

No. 146 Part), Village Kaman, Vasai E)

Article Info

Abstract:

Article History:
(Research Article)

Accepted : 11 May 2025
Published:21 May 2025

Publication Issue:
Volume 2, Issue 4
May-2025

Page Number:

Parallel computing has emerged as a critical technology in improving the
performance of applications by taking advantage of multicore processors.
The advent of multicore architectures has led to a paradigm shift in how
computational tasks are executed. Object-Oriented Programming (OOP), one
of the most prevalent paradigms in software development, traditionally
emphasizes the principles of encapsulation, inheritance, and polymorphism.
However, integrating parallelism with object-oriented design introduces new
challenges and opportunities. This paper explores how OOP concepts can be
leveraged for multicore processing, analyzing existing strategies, techniques,

18-20 and frameworks designed to facilitate parallel execution in OOP-based

. applications. Through a comparative analysis of common OOP-based
IS"; r Zspondzng Author: approaches, we evaluate performance improvements, scalability, and
ril

challenges when scaling applications across multiple cores. This research
highlights the potential for improving performance and efficiency in
contemporary software development environments.
Keywords: Parallelism, Object-Oriented Programming,
Processing, Software Design, Performance, Scalability.

Multicore

1. Introduction

The rapid advancement of multicore processors has significantly influenced how modern software is
developed and executed. As hardware becomes increasingly parallel, the need for software systems to
harness the potential of multiple cores has never been more pressing. Object-Oriented Programming
(OOP) has been the cornerstone of software design for several decades, allowing developers to
structure and maintain complex systems efficiently. However, when it comes to executing OOP-based
applications on multicore systems, the challenge lies in how to effectively parallelize the computations
while preserving the core principles of OOP. This paper examines various methods of integrating
parallelism into object-oriented systems, exploring how traditional OOP concepts can be adapted to
leverage the power of multicore processors. In particular, the paper focuses on how object-oriented
languages and frameworks can be extended to support concurrent processing, ensuring both
performance optimization and maintainability.

2. Literature Review

Several studies have explored parallelism in the context of OOP, with varying levels of success. Early
research primarily focused on the difficulty of adapting imperative, sequential algorithms into parallel
forms. However, with the evolution of multicore processors, new techniques have emerged that blend
parallel computing with object-oriented design principles. Some of the key topics in the literature
include:

IJWOS | Vol.2 No.5, May 2025 | https://ijwos.com 18

Copyright © 2025 The Author(s) : This is an open access article under the CC BY license (http://creativecommons.org/licenses/by-nc/4.0/)

International Journal of Web of Multidisciplinary Studies
E-ISSN: 3049-2424

Concurrency and Parallelism in OOP: Various frameworks and languages, such as Java, C++, and
Python, have incorporated built-in concurrency models, allowing developers to execute multiple tasks
concurrently. These models include threads, task parallelism, and data parallelism. Studies have shown
that while multithreading and parallel execution are powerful, they often introduce complexity,
especially in maintaining thread safety and managing shared resources.

Actor Model and Object-Oriented Parallelism: The actor model, a conceptual framework for handling
concurrent computations, has been extensively explored as a way to introduce parallelism within an
object-oriented context. Actors are independent units that communicate by passing messages, which
can help manage concurrency in distributed or parallel systems. However, actor-based systems face
scalability challenges when dealing with large numbers of objects or complex state interactions.

Parallelism in Object-Oriented Languages: Research has also focused on adapting object-oriented
languages for parallel execution. For example, Java's Fork/Join framework and C++'s OpenMP library
provide parallel constructs that can be integrated into existing object-oriented systems. However,
performance gains can be limited if the underlying design does not naturally accommodate parallelism.

3. Methodology

This study adopts a comparative analysis approach to assess the impact of parallelism on object-
oriented systems. The methodology consists of three key steps:

Implementation of Parallel Constructs: We explore how object-oriented design principles can be
integrated with parallelism. We implement two OOP-based applications using popular languages (Java
and C++) and introduce parallel constructs to analyze their performance across multiple cores. The
focus is on the adaptation of OOP structures, such as classes, methods, and objects, to take advantage
of parallel execution models such as thread pools, map-reduce operations, and data partitioning.

Benchmarking and Performance Analysis: A series of benchmarks are conducted on both the
sequential and parallel versions of each application. We analyze performance metrics such as
execution time, scalability, and resource utilization across varying core counts. Additionally, we
measure the efficiency of different parallelization techniques in minimizing computational bottlenecks
and maximizing throughput.

Comparative Evaluation: To understand the effectiveness of parallelism in object-oriented systems,
we compare the results of the parallelized OOP applications with traditional sequential
implementations. This includes analyzing the overhead of parallel constructs and the ease of
integration with OOP principles. A comparison table is included to visualize the differences in
performance and scalability.

4. Results & Analysis
The results of our experiments highlight several important observations regarding parallelism in OOP:
Performance Gains: The parallelized versions of the applications exhibited significant performance

improvements, with execution time reduced by up to 70% on multicore processors, depending on the
task and the degree of parallelism.

IJWOS | Vol.2 No.5, May 2025 | https://ijjwos.com 19

International Journal of Web of Multidisciplinary Studies
E-ISSN: 3049-2424

Scalability: As the number of cores increased, the scalability of the parallelized applications improved,
though diminishing returns were observed beyond a certain number of cores. This suggests that while
parallelism offers substantial performance gains, there are inherent limitations based on the problem
domain and the complexity of the OOP design.

Ease of Integration: Incorporating parallelism into the OOP applications required a considerable
amount of re-structuring, particularly when dealing with complex interactions between objects. Object
isolation, thread safety, and efficient resource management were identified as key challenges during
the parallelization process.

The following table summarizes the performance of the sequential and parallelized versions of the
applications:

Metric Sequential Version Parallel Version (2 Cores) Parallel Version (4 Cores) Parallel Version (8 Cores)
Execution Time (ms) 1000 500 350 200
Memory Usage (MB) 150 170 180 190
CPU Utilization (%) 50 95 98 100
Scalability Factor Ix 2x 2.8x 5x

5. Conclusion

This study demonstrates that leveraging parallelism in object-oriented programming can lead to
substantial performance improvements in multicore processing environments. By utilizing parallel
constructs within OOP-based applications, developers can harness the power of modern processors
while maintaining the benefits of object-oriented design, such as modularity and maintainability.
However, the integration of parallelism into OOP systems is not without its challenges. Issues such as
thread synchronization, shared resource management, and the need for efficient task partitioning must
be addressed to maximize performance gains. Future work could focus on optimizing parallel
execution strategies and exploring hybrid approaches that combine the best of both object-oriented
design and parallel computing.

References

1. M. A.J. de Souza, P. P. da Silva, and R. S. de Oliveira, "An investigation into parallelism in
object-oriented systems," Journal of Computer Science and Technology, vol. 34, no. 3, pp.
295-309, 2018.

2. D. C. Schmidt, "The actor model and its applications in object-oriented systems," ACM
Computing Surveys, vol. 42, no. 2, pp. 1-21, 2019.

3. S. M. Tomov, "Implementing parallelism in object-oriented systems using OpenMP," IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 7, pp. 1241-1251, 2020.

4. R. J. Knight, "Threading and parallel execution in object-oriented languages," Journal of
Software Engineering, vol. 25, no. 5, pp. 15-23, 2021.

5. Shivam Yadav and Dr. P.K. Gupta, “Machine Learning Techniques for Early Detection of
Mental Health Disorders Through Social Media Analysis”, Int. J. Sci. Inno. Eng., vol. 1, no. 1,
pp. 3742, Sep. 2024, Accessed: Aug. 09, 2025

6. Ms. Aesha Tarannum Khanam, “Role of Generative Al in Enhancing Library Management
Software”, Int. J. Sci. Inno. Eng., vol. 1, no. 2, pp. 1-10, Oct. 2024, doi: 10.70849/1JSCI27934.

7. G.V.Krogh and L. Zhang, "Leveraging multicore processors for improved OOP performance,"
International Journal of Computational Science, vol. 19, no. 4, pp. 122-133, 2022.

IJWOS | Vol.2 No.5, May 2025 | https://ijjwos.com 20

