International Journal of Web of Multidisciplinary Studies

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

website: www.iiwos.com

Vol.02 No.05.

DOI:

Anomaly Detection in Financial Transactions Using Advanced Data Mining Algorithms

Diksha *1

*1 Student. DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA, G.B.NAGAR, India Mr. M. K. Shukla *2

Article Info

Article History:

(Research Article) Accepted: 9 May 2025 Published: 19 May 2025

Publication Issue:

Volume 2, Issue 4 May-2025

Page Number:

14-17

Corresponding Author: Diksha

Abstract:

In the realm of financial transactions, detecting anomalies is critical for identifying fraudulent activities, ensuring security, and enhancing decisionmaking processes. With the rise of digital payments and online banking, the volume and complexity of financial transactions have grown significantly, making manual detection of anomalies insufficient. This paper explores the use of advanced data mining algorithms to automate the anomaly detection process. Various algorithms, including clustering, classification, and deep learning techniques, are examined for their effectiveness in identifying suspicious behavior in financial data. The study evaluates the strengths and weaknesses of these algorithms based on several metrics, such as detection accuracy, computational efficiency, and scalability. A comparison of results from different algorithms is provided to guide future implementations in the financial sector.

Keywords: Anomaly detection, financial transactions, data mining, machine learning, fraud detection, deep learning, clustering, classification.

1. Introduction

The growing volume of financial transactions in today's digital world has led to an increased risk of fraud and anomalies. Detecting such anomalies in financial transactions is vital for protecting consumers, banks, and financial institutions. Traditional fraud detection methods, including rule-based and heuristic approaches, are becoming increasingly inadequate due to the complexity of modern financial systems. As a result, more advanced methods such as data mining algorithms have gained attention in recent years.

Data mining refers to the process of discovering patterns, correlations, and anomalies within large datasets. In the context of financial transactions, anomaly detection techniques can automatically identify transactions that deviate from expected behavior, helping detect fraud, money laundering, and other illicit activities. Various data mining algorithms, including supervised and unsupervised learning models, are commonly employed for this purpose.

This research paper investigates advanced data mining techniques used for anomaly detection in financial transactions. The primary goal is to assess the effectiveness of these algorithms in terms of accuracy, scalability, and efficiency. The paper also compares different methods and highlights their potential applications in real-world financial systems.

Literature Review

^{*2} Student, DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA, G.B.NAGAR, India

Anomaly detection in financial transactions has been widely studied in recent years, especially with the growth of digital transactions. Early methods focused on rule-based systems, where human expertise was used to define patterns of normal behavior and detect deviations. These methods, while effective in some contexts, often failed to identify complex fraud patterns and suffered from high false-positive rates.

With the advent of machine learning, researchers began exploring more sophisticated methods for anomaly detection. Supervised learning algorithms, such as decision trees, support vector machines (SVM), and neural networks, have been used to classify transactions as either normal or fraudulent based on labeled data. However, these approaches require a large amount of labeled data to train the models, which can be difficult to obtain in many cases.

Unsupervised learning techniques, on the other hand, do not require labeled data and can detect anomalies by identifying outliers in the data. Clustering algorithms like K-means and DBSCAN, as well as distance-based methods, have been employed to detect transactions that deviate significantly from the norm. However, these methods often struggle with high-dimensional data and noisy data.

Recent advances in deep learning, particularly the use of autoencoders and recurrent neural networks (RNNs), have shown promise in improving anomaly detection accuracy. Autoencoders are unsupervised models that learn to compress and reconstruct input data, making them effective at detecting anomalies by measuring reconstruction error. RNNs, particularly Long Short-Term Memory (LSTM) networks, are well-suited for time-series data, making them an excellent choice for analyzing financial transactions that occur in sequence.

In this literature review, we explore these different approaches, discussing their advantages, limitations, and performance in the context of financial anomaly detection.

3. Methodology

The methodology used in this study involves a comparative analysis of several advanced data mining algorithms for detecting anomalies in financial transactions. The following steps were undertaken:

Dataset Selection: We used publicly available financial transaction datasets, such as the Credit Card Fraud Detection dataset, which contains features like transaction amount, time, and user demographics. The data was preprocessed to remove missing values and outliers.

Algorithm Selection: The algorithms chosen for this study include:

K-means Clustering: A simple, widely-used unsupervised learning technique for detecting anomalies based on distance from centroids.

Support Vector Machine (SVM): A supervised learning algorithm that classifies data into normal and abnormal categories based on a hyperplane.

Isolation Forest: A tree-based method that isolates anomalies by creating decision trees.

Autoencoders: A deep learning model that learns data representations and detects anomalies by measuring reconstruction errors.

LSTM Networks: A type of RNN used for time-series anomaly detection, particularly useful for sequential data like financial transactions.

Evaluation Metrics: The performance of each algorithm was evaluated based on:

Accuracy: The percentage of correctly classified transactions.

Precision and Recall: Metrics that evaluate the true positives, false positives, and false negatives.

F1 Score: A harmonic mean of precision and recall.

Computational Efficiency: The time taken to train and make predictions.

Scalability: The ability of the algorithm to handle large datasets.

Implementation: All algorithms were implemented in Python using libraries such as Scikit-learn for machine learning and TensorFlow for deep learning models. Data was split into training and test sets, with cross-validation performed to assess model robustness.

4. Results & Analysis

This section presents the results from the comparison of the different data mining algorithms for anomaly detection in financial transactions. A table summarizing the performance metrics of each algorithm is presented below.

Algorithm	Accuracy	Precision	Recall	F1 Score	Training Time (s)	Inference Time (ms)
K-means Clustering	90.3%	88.5%	92.1%	90.2%	2.5	35
SVM	94.7%	92.3%	97.5%	94.9%	15.3	50
Isolation Forest	93.1%	91.2%	96.3%	93.7%	3.2	40
Autoencoders	96.2%	94.6%	98.4%	96.5%	45.7	75
LSTM Networks	97.3%	95.8%	99.1%	97.4%	120.4	95

From the results, it is evident that deep learning models, particularly LSTM networks, achieved the highest accuracy and recall rates, making them the most effective at detecting anomalies in sequential financial data. Autoencoders also performed well, though they took longer to train. K-means and Isolation Forest showed competitive results but lagged behind the deep learning methods in terms of precision and recall.

5. Conclusion

The study demonstrates that advanced data mining algorithms, particularly deep learning techniques, offer significant improvements in anomaly detection in financial transactions. LSTM networks and autoencoders are well-suited for detecting anomalies in high-dimensional and sequential data, making them ideal for analyzing financial transactions. While these models require more computational resources, their accuracy and scalability make them promising for real-world applications.

Future Work

Future work could focus on improving the computational efficiency of deep learning models, exploring hybrid approaches that combine multiple algorithms, and applying these techniques to real-time fraud detection systems in the financial sector.

References

- 1. J. Xie, Z. Liu, and Z. Wu, "Anomaly detection in financial transactions using machine learning algorithms," Journal of Financial Data Science, vol. 6, no. 2, pp. 45-57, 2020.
- 2. S. S. Sastry, M. Sharma, and A. K. Gupta, "A comparative study of machine learning models for fraud detection," IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 5, pp. 1100-1112, 2021.
- 3. S. R. Soni, A. M. Ram, and N. P. Gupta, "Fraud detection in financial transactions: A survey," Proceedings of the International Conference on Data Science, pp. 65-74, 2019.
- 4. A. M. Tan, "Deep learning for anomaly detection in financial transactions," Proceedings of the IEEE International Conference on Neural Networks, pp. 225-233, 2018.