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One of the most important branches of contemporary mathematics is fixed
point theory, which has wide-ranging effects on both the pure and practical
sciences. The study of fixed points in different structures has yielded
profound insights into analysis, topology, optimization, and nonlinear
functional equations. A fixed point of a mapping is a point that stays invariant
under the action of the mapping. We provide a thorough analysis of fixed
point theory in the context of topological spaces in this paper. We examine
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in Hilbert spaces, nonlinear mappings, and their relationships to
contemporary computer techniques, the work not only synthesizes previous
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1. Introduction

Topology is a really interesting branch of mathematics, and it forms in analysis, geometry, and
algebraic topology.

Point set topology is traditional part of topology. It deals wither ideas like continuity, homeomorphism
of functions, and the compactness and connectedness of topological spaces. Examples of topics in
topology include sets, mappings (which are functions), and topological spaces. Topology is also the
branch that links geometry and algebra.

A family of sets with specific properties used to define a topological space, which is a basic concept
in topology. Homeomorphisms are especially important; they are defined as continuous functions that
have a continuous inverse. Topology includes several subfields, such as point-set topology, which
establishes the foundation of topology and explores concepts related to topological spaces; algebraic
topology, which generally measures how connected something is using algebraic tools like homogony
groups and homology; and geometric topology, which mainly studies manifolds and their embeddings
in other manifolds. In recent years, many of the new ideas in mathematics have originated in topology
from geometrical images, which were then formalized and applied to more algebraic areas.
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The following sets, namely GRW-open sets, GRW-locally closed sets, GRWIc*, GRWIc, and semi-
GRW-closed sets, are being studied using GRW-closed sets as well as other types of continuity. GRW-
closed sets in ditopological spaces are currently a main focus of research. In ditopological spaces,
additional concepts such as GRW-continuity, GRW-irresolute, and GRW-homeomorphism are
defined and explored. Future studies could further examine the properties of GRW-homeomorphisms
in both topological and ditopological spaces. In ditopological spaces, we can introduce GRWc-
homeomorphism, connectedness, and compactness. Other spaces such as ideal topological spaces, grill
topological spaces, digital topological spaces, digital lines, and fuzzy topological spaces can also be
used to study GRW-closed sets.

Let's now explore the various applications of topology and understand its impact.Applications to
Digital Image Processing: Today, digital images are a major way to share and work with visual
information. Examples include photos from a digital camera, text in a book, artwork, and graphics.
Digital image processing involves creating, storing, manipulating, and showing these images. In each
step of this process, topological ideas and tools are used to address different challenges. Digital
topology plays a central role here. It is based on a digital plane, which is formed by combining two
digital lines. A digital line is simply the set of all integers, Z. For each odd integer n, the basic element
is B(n) = {n}, and these integers are called pixels. So,each pixel is considered an open set in digital
topology. Digital topology studies how topological properties affect the way digital images are
displayed. The digital plane in this context is the topological space Z x Z. A visible screen is a part of
this digital plane that includes all the open points. For every (m, n) in Z x Z, this applies.Z , basis
element is given as:

(m,n) if mandn are old
B(m .n) = i(m +a,n){b = -1,0,1} if misevenand nis odd
’ if misodd and nis even
(m+an+b)(a b= —11,0}if m,nare even

Even thougha digital plane can also be made by dividing the plane of real numbers with standard
topology, the key focus in digital image processing is to study the features of an object from its digital
image. In 1979, a paper by AzrielRosenfeld titled "Digital Topology" introduced the first work that
looked at how topological ideas like connectedness and continuity work in a digital setting. Later on,
these ideas were refined, and special topological spaces were created to model digital images, allowing
topological concepts to be used directly in digital environments. Since the real world is seen as
connected and continuous,it's necessary to use tools that turn images into digital form while keeping a
connected structure to match the real-world relationships. The digital plane, which is made up of points
in a grid like Z x Z, has open, totally disconnected,and dense visible structures along with hidden
structures that provide connectivity. This makes it the right model for digital image processing. So,the
role of topology in digital image processing is just as important as it is in general topology. Application
to Robotics: Topology and physics have a strong connection. To explore complex topics in other areas,
you need a deep understanding of topology. In physics, the first step is to study the configuration space,
which acts as a topological space. To do this, we need to track variables related to the positions and
arrangements of objects. For example, when working with a robot arm, we need to monitor the
movement of its different parts. The configuration space helps us track these variables effectively. It
also helps in studying other aspects like momentum and velocity, leading to the concept of phase space.
Topology is also very useful for studying functions. One important map is the forward kinematics map,
which is essential in designing movement for robots and other machines. This map helps identify
problematic or difficult arrangements in a mechanism. In robotics, there's a specific point at the end of
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the arm that performs tasks like picking up objects, drilling, or painting. This point is called the end
effectors.

2. GENERALIZED ab-CLOSED SETS :

Theorem 1.1 :Let A, B, S, T be self mapping of a fuzzy metric space (X, M ,*) satisfying conditions
AX) cT(X)and B (X) c S(X) ( 3.2.1)

M(Ax, By, £)= @(min{ Sx, Ty, ) ,M(Sx, Ax, ), M(By,Ty,t)}) ( 3.2.2)
Where x,y € X and @:[0,1] — [0,1]@0(s) =5, where0<s<1
A arbitrary pointx, € X then the sequence {y,} defined by

Yon = TXons1 = AXop,
Vona1 = SXopns1 = Bxopi1V n=012.... (3.23)
Is a Cauchy sequence in X'
Proof: fort > 0

MY2n Yon+1, %) = M(Ax2p, BXony1, 1)
MY2n Y2ns1, ) = O(min{ M(Sx2p, Txon41, 1) , M(SX2n, AxXon, 1), M(BX2n41, T X2n41,£)})
MYz Y2ne1, ) = OIin{M (Yzn-1,Yon ), M(Van-1,Yan ), M(BXgns1, TXoni1, £)})
Case first M(Yz2n, Yan+1,t) > M(Van-1, Yon, t)
if M(Yan—1,Y2n £) < M(Yz2n, Yoner )
Case two M (Yan, Yan+1,t) > MVon, Vonssst)
if M(Yan-1,Vorn £) = M(Van, Vanir £)eeeevvveenn (3.2.4)
As  @(s)=s, where0<s<l1
Thus M (y2n, Yon+1,£) =0 isan[0,1] andlimit 1 <1 wedeclare[ =1
Orthenl <1 whichonlettingzn = o in............ (3.2.4)
We get1 > @(I) > | a contradiction our hypothesis [ = 1
So M(Vont1,Yons2r t),m =0 where n € N
Is a sequence of positive number [0,1] which tends to [ = 1n € V'
MY Yn1,%) > M (Y1, Yo, )

And lim M(Yn, Yn41, %) =1

Now for any positive integer

M (Yn, Ynip, t) > M (Yn—l,: Yno %) RETTITRT *M (Yn+b—1,: Yn+b:%)

v lim M(yp, Yp41,t) =1 fort >0
Mn—>00
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It follows that lim M (Y, Yn4p,t) = 1x1 . ... *1=1
n—00

Which shows that the sequence {y,} is a Cauchy sequence in X.

Theorem 1: Let (X, d) and (Y, e) be fuzzy set . If T is a mapping from X into Y and S is a mapping
from Y into X satisfying the following conditions

e(ty, Tsy) < ¢q.max{ d(x, sy), €(y, ty), €(y, Tsy), d(x, Sty), d(sy, Sty) } --- (1)
d(sy, Sty) < cz.max{ e(y, ty), d(x, s,), d(X, Sty), e(ty, Tsy), e(y, Tsy)} --- (2)
forallxin X andyin Y where 0<c¢; <land0<c, <1,

then ST has a unique fixed point z in X and TS has a unique fixed point w in Y.
Further t, = w and s,, = z

Proof. Let x4 be an arbitrary point in X. Define a sequence {x,} in X and a sequence {y,} in Y, as
follows:

X, =(ST) nxg , ¥, =T(xp_q1) forn=12,....

We have d(x,, x,_1) = d(Sy,, STx,,) <c,.

max {e(yn, Txz), d(xn,Syn), d(xn,STxy), e(Txn, TSy ), (¥, TSyn)} = Co.
max{e(Yn, Yn+1)s d(Xn, Xp), d(Xp, Xn-1), eWVn+1> Yn+1)s

e(Yns Yn+1)} = Cz - &Y, yntl) --- (3)

Now

e(Vn> Yn+1) = e(Txp_q, Txtn) = e(Txp—1, TSyp) = cl.

max {d(Xp-1,S¥n), €(Vn,Txn-1), €(Vn,TSy),

d(2n-1,8Txp_1d(Syn, STxp_1)} < €1 d(Xn—1, X5) - (4)

Hence using inequalities (3) and (4),

we have d(x,, , x,_1) < ¢165. d(xp_1, Xp) i <(c1¢2) n.d(xg , x1) — 0 as n—oo
(since 0 < c;¢; <e(Tz,w) (since ¢;c; < 1),

Which is a contradiction.

Thus Tz = w. To prove that Sw = z.

Suppose that Sw # z. d(Sw, z) = lim d (Sw, STx,,) < lim c,.
n—oo n—-oo

max{e(w, Txy), d(x,, Sw), d(x,, STx,), e(Tx,, TSw), e(y,,, TSx,)} < c,.

e(w, TSw) Now e(w, TSw) = lim e (Tx,,, TSw) <noco— lim c¢.
n—oo

n—-oo
max{d(x,, Sw),e(w, Tx,),e(w, TSw),e(Tx,,,TSW),e(Vy,, TSx,)} < c;.d(Sw, z)
Hence d(Sw, z) < ¢;¢,.d(Sw, z) < d(Sw, z) (since ¢;c,< 1)

Which is a contradiction. Thus Sw = z.

We have STz=Sw =z and TSw =Tz =w.
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Thus the point z is a fixed point of ST in X and the point w is a fixed point of TS in Y.
Uniqueness: Let z'# z be another fixed point of ST in X.

We have

d(z, z") = d(Sw, STz") < ¢,. max{e(w,Tz"),

d(z’,Sw), d(z’,STz"), e(Tz",TSw), e(w, TSw)} <c, .

e(Tz ",w) Now e(Tz', w)=e(Tz’, TSw) < c;.

max{d(z’, Sw), e(w, Tz"), e(z’, TSz"), e(Tx,, TSw), e(yn, TSxn)} < c;.

d(z, z") Hence d(z, z') < ¢4¢,.d(z, z") < d(z, ") (since ¢, ¢5. < 1)

Which is a contradiction.

Thus z=7z".

So the point z is a unique fixed point z of ST. Similarly, we prove the point w is also a unique point of
TS.

Now consider a non-empty set X.

A crisp subset A of X is defined by specifying which elements of X are in A. In other words, a crisp
subset A of X can be studied using a characteristic function that assigns to each element of X a value
of either 1 (if it belongs to A) or 0 (if it does not belong to A). Therefore, any element of X either
belongs to subset A or does not belong to subset A.

However, in real-life situations, there are many instances where it is not possible to clearly state
whether an element of X belongs to subset A or not.

For example, consider X as the collection of students in a particular class. Since every student has
some level of intelligence that can be graded, it is not possible to clearly define the intelligence of a
student as a crisp subset of X.

Theorem 2: [2] Let S and t be the using the mapping then shoe that the matrix space is used to the
SX)cX, TX)cX

d(se,t,) < {max. {d(x,sx)d<y.sx)+d(y.ty)] }

1+d(sx.ty)

d(y,sx)d(x,ty)+d(x,y)d(sx,y)}
d(syty)+d(syy) ’

d(x,5.)d(y,s,) + d(x,y)d(sy t,)
d(y,ty) +d(y,sy)

d(y, sx)d(x, ty) + d(x, ty)d(y, Sy)
d(y,ty) +d(y,sx)

We mostly expand and enhance theorem in this section. By the way, we simplify the theorem equation
2)

proof. First, we present a different straightforward proof of Theorem (2).

b

)

3
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Praveen and colleagues (2014) to provide evidence of the sequence of functions that include H-
functions. The proof was accomplished with the help of various operational approaches. He presented
several generating relations along with a few formulas that were associated with finite summation. In
addition, he discussed the significance of the H-function in terms of sequencing. In general, the H-
function appears to be a type of large number sequence, but in some special cases, it also involves
smaller polynomial functions. He repeated his statement regarding the linear differential equation,
which he said is easy to compute. This might take the form of a new operator-valued function, which
we can refer to simply as a function and its solution. We can obtain this by performing an inverse
function on it. A.

Jyotindra, and others (2013) presented techniques in operational research, also known as operational
calculus. Here, he discussed some functions of sequences that involve polynomials. The operational
techniques refer to the way of showing the different steps of calculus, as well as its derivations and
integrations. All of this combined is known as operational research. By using this calculus, we can
analyze problems. Differentiation, which plays a key role in the operational method and which we
often use when solving polynomial equations, is one of the techniques we generally apply. Its

o D d . .
abbreviation is D, which is the same as - and it operates on functions. We also have a new operator-
valued function F(D). It has the same value based on its established role.

3. GENERALIZED D b-CONTINUOUS MAPS IN FUZZY TOPOLOGICAL SPACES :-

Researchers have carried out studies on fuzzy topological spaces, focusing on fuzzy generalized Ab-
closed sets, generalized A®b-open maps, and homeomorphisms. The ideas presented aim to inspire
the application of these new concepts across various areas of topology. The work could be expanded
to explore analytical topics such as connectedness, compactness, and convergence, which are
fundamental in topology. It is recommended that this study be introduced and examined within a
minimal structure. This approach could also be applied in Digital Topology. Additionally, the new
ideas of fuzzy bi-topological spaces can be explored for these sets. Furthermore, the breakdown and
analysis of generalized b-closed and generalized b-open sets can be investigated.

Definition 2.1: Given a Cone Banach Space (M, || - ||), two self mappings @ and p on the space satisfy
the property (E.A.) for a sequence {u,} in such a way that:

= lim (Z)up

= lim pu, , forsomet €M

p—)OO

Examples 2.2: Let M = [0, 1], Define @, 1): M — M such that

P(u)=2—uand YP(u) = 3% Consider a sequence

1+1 .
p=—-we have, lim p—oo @(u,)

<

2-1 :
< pP= 1 and lim p—o0 (up)

1 2 ;
=——-= > p=1 lim p—o0 @(u,)

= lim p—oo (u,) = 1 Clearly @ and v satisfy property (E.A.)
Example 2.3: Let M = [0, 1], Define F, : M — M such that

@(u) =1 —u and Y(u) = u Consider a sequence

IJWOS | Vol.2 No.10, October 2025 | https://ijwos.com 88



International Journal of Web of Multidisciplinary Studies
E-ISSN: 3049-2424

1_

up = pl we have, lim p—o0 @(u,)

1-1

= 0 and lim p—o0 (uy)

[
[~

ey

*|

= 1 lim p—oo B(uy) # lim p—oo P(up)

Clearly @ and Y do not satisfy property (E.A.)

Theorem 2.4.: Four self-mappings F, G, H and L be defined on Cone Banach Space (M, ||-||) with the
norm lul = d(u, 0) satisfying the conditions

IHu — Lvl < alFu — Hul + IFu — Lvl + clGv — Lvl ... (1)
forallu,veManda,b,c>0,a+2b+c<1.

(1) F(M) € G(M) and H(M) € L(M)

(i) (F, H) and (G, L) are weakly compatible.

(iii) One of pair (F, H) and (G, L) satisfies property (E.A.) Then F, G, H and L have a unique
common fixed point

Proof: Let (G, L) satisfy property (E.A.) then there exist a sequence {up} in (1) M such that
lim p—oo L{u,} = lim p—oo G{u,}

=t for some t € M Since (M) < (M) then 3 a sequence {1, } in Ml such that

L {uy,} = {v,} Hence, lim p—oo {vp} = t, We claim that

lim p—oo H{v,} =t

on the contradiction, we put u = v, and v = u, in (1)

we have IHv,— Lu, | <1Fv, — Hy,l + 1Fuy, — Lu, | + 1Gu, — Lu,l

From the above condition we get, |

Hv, — Luyl < alFv, — Hu,l + b - 0 + clGu, — Lu,| Now taking
limit p — oo I1Hv, — tl < alt — Hu,l + clt = tl (1 — a)lHv, —t1 <0
But (1 — a) # 0 then lim p—oo {v,}

=t Hence lim p—oo {v,}

= lim p—o {v,}

=t Suppose first that, (M) is complete subspace of M then

t = (w) for some w € Ml then lim p—oo {u,}

= lim p—oo {v,}

= lim p—oo {u,}

=lim p—oo {v,} =t

= (w) We claim that,
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Hw = Fw, on the contradiction we put u =w and v =u, in (1) |
Hw — Luy| <I1Fw — Hwl + IFw — Lu, | + 1Gu,, — Lu,|

Letting p — oo and using above condition.

4. Conclusion

In topological spaces, the outcome of fixed point theory is promising and bright. The need for generic,
robust fixed point findings is growing as topological structures are increasingly used to model abstract
and real-world systems. To ensure its relevance in contemporary mathematical science, this field must
be advanced by a combination of in-depth theoretical study and useful multidisciplinary applications.
The study of location is known as topology. While this particular area of mathematics emerged in the
early 1900s, some of its concepts were well established previously. In 1736, Leonhard Euler published
the first article on the Seven Bridges of Konigsberg, which is regarded as the earliest instance of
topology being used in practice.

Augustin-Louis Cauchy, Johann Benedict Listing, Ludwig Schlafli, Enrico Betti, and Bernhard
Riemann are some of the other significant figures who have made contributions to the discipline. In
1847, Johann Benedict Listing's work "Vorstudien zur Topologie" is credited with coining the term
"Topologie". In 1883, an article in the journal Nature used the English word "topology" for the first
time to distinguish between "qualitative geometry" and regular geometry. Along with algebra and
analysis, topology is generally regarded as one of the fundamental pillars of contemporary abstract
mathematics. Initially, topological research was motivated by real-world issues., However, the
emphasis changed to more abstract concepts after the field was formally established. Nonetheless,
topology has recently had a significant influence on numerous other fields as well. Topology is being
used by scientists and mathematicians to investigate and comprehend actual occurrences.
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