International Journal of Web of Multidisciplinary Studies

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

website: **www.ijwos.com** Vol.02 No.09. P. 8-15

E-ISSN: 3049-2424 DOI: doi.org/10.71366/ijwos

Role of E-Waste Management for Environmental Sustainability

M. Chakraborty*1

*1 Sarsuna College, Kolkata-700061, West Bengal, India

Article Info

Article History:

(Research Article) Accepted: 18 Sep 2025 Published: 20 Sep 2025

Publication Issue:

Volume 2, Issue 9 September-2025

Page Number:

8-15

Corresponding Author:

M. Chakraborty

Abstract:

E-waste is the popular name for the electrical and electronic products nearing the end of their useful life. The products contain some hazardous substances that pose a threat to human health and their surroundings. Some groups of people named as vulnerable populations are prone to the health risks. The e-waste products need to be managed in an environmentally sound technique so that they are less harmful to people and the environment. The effective management of electronic waste continues to face substantial challenges and some recommendations are proposed to protect public health, foster green economic growth, and contribute significantly to a sustainable future.

Keywords: E-waste, health, environment, management, challenges, sustainable.

1. Introduction

Electronic waste, or e-waste has become one of the most crucial environmental concerns of the modern era due to the rapid progress of information technology along with technological innovations and increasing worldwide usage of electronic devices. E-wastes are basically discarded electrical and electronic equipment (EEE) like phones, computers, tablets, televisions, and large appliances like refrigerators, washing machines etc [1]. This discarded material stream is expanding at an alarming rate, posing significant challenges to environmental sustainability and human health worldwide. It can cause soil, water and air pollution if not properly disposed of as it contains hazardous or toxic substances like lead, mercury, cadmium, dioxins etc [2]. These hazardous components impact vulnerable populations, including informal workers, children, and pregnant women. It also contains some valuable components as well including precious metals like gold, copper, and nickel, as well as rare materials like indium and palladium. Recovering these materials through proper recycling techniques presents a significant economic opportunity.

E-waste generation is expanding globally as well as in India, presenting a big challenge for waste management systems. Global e-waste generation has increased significantly recently. In 2019, 53.6 megatons (Mt) of e-waste was produced globally which increased to 62 Mt in 2022. It is expected to reach 74.7 Mt by 2030 [1]. The increase is primarily attributed to three factors: higher consumption rates of electronic equipment, shorter product lifecycles, and limited repair options for broken or outdated devices. India ranking as the world's third-largest e-waste generator, after China and the United States. The country's e-waste generation has surged from 1.01 million metric tonnes (MT) in 2019-20 to 1.751 million MT in 2023-24 with projections to nearly 14 Mt annually by 2030. In spite

of regulatory efforts, India's formal recycling infrastructure lags significantly behind its generation rates.

In this paper, the hazards of e-wastes, the need for its appropriate management and the various options that can be implemented are discussed.

2. Impacts of E-Waste

The inappropriate e-waste management poses severe results, impacting environment, public health, and economic stability. Unsuitable disposal practices like dumping in landfills, open burning, or crude acid baths commonly employed in informal recycling sectors, facilitate the release of toxic chemicals into the environment. Table 1 provides a list of the specific hazardous substances found in e-waste and their environmental and health consequences.

Table 1: Key Hazardous Substances in E-Waste and Associated Impacts

Hazardous Substance	Source in E- waste	Impact on environment	Impact on human health
Lead	PCBs, Cathode Ray Tubes (CRTs), batteries, solder	Soil contamination, water pollution (groundwater, surface water), air pollution (from burning)	Neurological damage (especially in children), developmental issues, brain/kidney damage, reproductive problems, reduced lung function
Mercury	LCD screens, fluorescent lamps, circuit boards, batteries	Soil contamination, water pollution (groundwater, surface water), air pollution (from burning)	Neurological damage, kidney damage, developmental issues, thyroid dysfunction, respiratory problems
Brominated Flame Retardants (BFRs)	Plastics (casings, circuit boards), cables	Soil contamination, water pollution, air pollution (from burning, releasing dioxins/furans)	Neurological damage, developmental issues, thyroid dysfunction, reproductive problems, cancer
Dioxins & Furans	Released during burning of plastics containing BFRs	Air pollution, soil contamination (redeposition), water pollution	Carcinogenic, reproductive and developmental problems, immune system damage
Particulate Matter (PM)	Released from burning, shredding, dismantling	Air pollution, soil contamination (redeposition)	Respiratory problems (asthma, reduced lung function), cardiovascular issues
Arsenic	Semiconductors, circuit boards	Soil contamination, water pollution	Skin lesions, internal cancers, neurological effects
Beryllium	Connectors, circuit boards	Air pollution (from heating)	Lung disease berylliosis), skin conditions

2.2 Environmental Degradation: Soil, Water, and Air Pollution

The improper disposal of e-waste has devastating effects on natural ecosystems, leading to extensive contamination of soil, water bodies, and the atmosphere.

Soil Contamination: While discarding e-waste improperly in landfills or informal dumping sites, toxic substances like lead, mercury, and cadmium leach directly into the soil that degrades soil quality, making it less fertile and inappropriate for agriculture. Moreover crops grown in such contaminated soil can absorb these toxins and introduce them into the food chain known as biomagnification, that leads to increasing concentrations of toxins at higher trophic levels, posing severe risks to food safety and ultimately impacting human health. It also harm microorganisms and plants.

Water Pollution: Heavy metals from e-waste like mercury, lithium, lead, barium etc can seep further through the earth to reach groundwater which eventually make their way into surface water bodies such as ponds, streams, rivers, and lakes. This leads to the toxification of water, making it unsafe for aquatic life and disrupting marine food webs. It also contaminates sources of clean drinking water for human communities.

Air Pollution: One of the most dangerous practices in informal e-waste recycling is open burning or heating of electronic components that releases hazardous compounds into the atmosphere, including lead, cadmium, beryllium, dioxins, furans, and particulate matter. Such emissions severely deteriorate air quality, contributing to respiratory problems and other health issues in nearby populations. Moreover, the incineration of e-waste materials containing greenhouse gases emits significant amounts of carbon dioxide and other greenhouse gases, directly contributing to global warming and climate destabilization.

Impact on Biodiversity: The release of toxic substances into the environment directly harms local flora and fauna, leading to a significant impact on biodiversity. Animals exposed to these toxins can suffer from reproductive failures and acute poisoning, which then cascades through the food chain, altering entire ecosystem dynamics.

Global Carbon Footprint: The environmental impact of e-waste extends beyond localized pollution to contribute to the global carbon footprint. When valuable materials within e-waste are not reclaimed and recycled, it necessitates the extraction of new raw materials through mining and subsequent manufacturing processes. These virgin material production processes are inherently energy-intensive and carbon-emitting. Conversely, proper e-waste recycling significantly reduces the carbon footprint.

2.3 Public Health Risks, with a Focus on Vulnerable Populations

Improper e-waste recycling and disposal pose severe health risks to human populations. Exposure to the toxic components of e-waste can lead to various diseases including respiratory diseases, neurological damage, and an increased risk of cancer. Some groups are referred to as vulnerable populations to this health risks. Children and pregnant women, informal workers (female and child labourers) and marginal communities who resides near landfills or informal e-waste recycling sites are primarily among them.

3. Present E-Waste Management Practices

Effective e-waste management involves the 'Reduce, Reuse, Recycle' approach guided by robust policy frameworks and the active participation of various stakeholders.

Reduction: Manufacturers should design easily repairable and durable products, and use materials that can be readily recycled. Consumers should also purchase better lifespan products. Companies retaining ownership of products and being responsible for their end-of-life management can encourage more sustainable designs. Thus e-waste management can be done by reduction.

Reuse and Refurbishment: Functional devices can be donated to charities or organizations, extending their lifespan. Devices that are still functional or can be easily repaired can be refurbished and resold at a lower cost, reducing waste and making technology more accessible.

Recycling: Recycling [3,4] is the most sustainable method for managing e-waste when reduction and reuse are not possible. The e-waste recycling process typically involves several steps:

i)Collection: E-waste is gathered from various sources through designated recycling bins, drop-off centers, take-back programs by manufacturers, or community collection drives.

ii)Safe Storage and Transportation: Collected e-waste is safely stored and then transported to particular processing facilities.

iii)Sorting, Dismantling, and Shredding: Workers manually separate specific items like batteries and lightbulbs that require special processing. Reusable components and valuable metals are also separated. Devices are carefully dismantled to recover valuable components like screens, circuit boards, batteries, casings. The remaining e-waste is shredded into smaller pieces to facilitate material separation [5].

Mechanical and Chemical Separation: Advanced machines and processes like magnetic separation, eddy current separation, water separation, dust extraction are used to separate materials based on their properties:

Refinement/Purification: Separated materials are further cleaned and refined to prepare them for reuse in manufacturing new products. This can also involve hydrometallurgical or biometallurgical processes for extracting metals.

Data Sanitization: Before any device is recycled or refurbished, all sensitive personal data must be securely wiped using certified data destruction methods to protect privacy.

3.1 Formal vs. Informal Sector Approaches

E-waste collection and recycling globally operate through two primary ways: the formal and informal sectors.

Formal Recycling Practices: These are characterized by systematic, regulated processes that adhere to environmental and safety standards. Authorized e-waste recycling centers follow a structured methodology for collection, sorting, dismantling, and material recovery. They ensure that hazardous

materials like lead, mercury, and cadmium are handled safely, minimizing environmental

Informal Recycling Practices: In contrast, the informal sector, dominates e-waste processing in many developing countries, including India. In India, over 95% of e-waste is managed by this unorganized sector, comprising laborers and small-scale industries. These practices typically involve hazardous methods such as open-air burning, acid bathing, improper manual dismantling, and dumping. Workers in this sector often lack appropriate safety precautions, protective equipment, and formal training, leading to severe exposure to toxic metals and plastics.

4. Recycling of E-Waste

contamination and health risks.

Continuous innovation is essential in recycling technologies due to the intensifying volume and complexity of e-waste. Traditional manual methods are getting increasingly inefficient and hazardous, necessitating smarter, more automated, and environmentally friendly solutions.

4.1 Automated Collection and Sorting

The initial stages of e-waste management—collection and sorting—are critical for efficient processing. Technological advancements are revolutionizing these steps:

Smart Collection Bins: The deployment of smart collection bins equipped with sensors has transformed e-waste collection that reduces transportation costs, and ensures more timely and efficient collection of e-waste.

AI-Powered Sorting Systems: Traditional e-waste recycling chiefly depends on manual sorting, which is time-consuming, labor-intensive, and prone to human error. AI-powered sorting systems offer a revolutionary alternative. These advanced systems utilize sensors, cameras, and machine learning algorithms to identify and separate various materials—including metals, plastics, and circuit boards—with unparalleled precision. They can process thousands of e-waste items per hour, significantly outpacing manual methods, thereby boosting efficiency, reducing processing times, and lowering operational costs.

4.2 Advanced Dismantling and Material Recovery

Beyond sorting, the disassembly and material recovery phases are undergoing significant transformation, moving from hazardous manual processes to automated, high-precision operations.

Robotics for Disassembly Automation: Robotics may become a promising frontier in e-waste recycling. Robotic systems, equipped with advanced sensors, and artificial intelligence, can disassemble electronic devices with remarkable accuracy and speed which speeds up the recycling process and allows for the recovery of reusable components.

Mechanical Separation Processes: These involve physical methods to liberate and separate different materials after initial size reduction. Next various wet and dry gravity separation equipment (e.g., rising current separators, jigs, shaking tables) and electrostatic separation are used to separate metalnonmetal fractions and obtain valuable materials like copper-rich mixed powder and glass fiber and resin powder.

4.3 Emerging Technologies

The future of e-waste recycling is being shaped by innovative chemical and biological processes that

offer more environmentally friendly and efficient ways to extract valuable materials.

Hydrometallurgical Processes: These techniques involve the use of aqueous solutions with environmentally friendly solvents to selectively extract metals from e-waste. By employing chemical agents and controlled conditions, hydrometallurgical processes can recover high-purity metals such as gold, silver, and copper from printed circuit boards (PCBs) and other electronic components.

Pyrometallurgical Methods: Pyrometallurgical recycling involves the use of high-temperature furnaces to melt and separate metals from e-waste. This approach is particularly effective for recovering precious metals and rare earth elements from complex electronic devices like smartphones and laptops. While effective and relatively simple, pyrometallurgy requires high-temperature process heat, often generated by fossil fuels, leading to significant greenhouse gas (GHG) and CO2 emissions. Innovations are exploring the use of renewable energy sources and waste heat recovery to mitigate these emissions.

Bioleaching: Bioleaching is an emerging and eco-friendly technology that harnesses the power of microorganisms (bacteria and fungi) to extract metals from e-waste. These microorganisms naturally dissolve metals, offering a cost-effective alternative to traditional chemical processes.

Blockchain and IoT for Tracking: The integration of Internet of Things (IoT) devices and blockchain technology is emerging as a promising technique for e-waste management. IoT devices, such as RFID tags, GPS, and environmental sensors, can be embedded in e-waste items to provide real-time monitoring of their condition, location, and recycling status from collection to disposal. This data is then securely recorded on a blockchain, creating an immutable, traceable, and transparent digital ledger of every transaction and movement of e-waste throughout the supply chain. These technological advancements collectively aim to improve resource recovery rates, minimize environmental impact, and enhance the economic viability of e-waste recycling, aligning with the principles of a circular economy.

5. Challenges and Recommendations

Despite significant progress in policy development and technological innovation, the effective management of electronic waste continues to face substantial challenges globally, particularly in rapidly developing economies like India.

5.1 Significant Challenges:

Several issues obstruct the transition to a truly sustainable e-waste management system. The volume of e-waste generated worldwide continues to increase at an alarming pace, driven by higher consumption rates, shorter product lifecycles, and limited repair options. This growth significantly outpaces the rate of formal collection and recycling, leading to a massive accumulation of unmanaged waste. A significant portion, often over 90-95% in countries like India, is handled by the informal sector. While providing a collection mechanism, this sector employs crude and hazardous methods such as open burning and acid baths, which release toxic chemicals into the environment and pose

severe health risks to workers and communities. The lack of integration between the two sectors undermines policy effectiveness. Improper disposal leads to widespread contamination of soil, water, and air with heavy metals and organic pollutants, causing long-term environmental degradation and impacting biodiversity. The health impact disproportionately falls on vulnerable populations, including informal workers, children, and pregnant women. Billions of dollars in valuable materials embedded in e-waste are lost annually due to inefficient and informal recycling practices. This represents a missed opportunity for resource recovery, job creation, and tax revenue. Many consumers are unaware of the dangers of improper e-waste disposal or the available formal recycling options. There is often a lack of economic or logistical incentives for consumers to dispose of e-waste responsibly. Discarded electronic devices often contain sensitive personal and corporate data, and improper disposal methods can lead to severe data breaches, identity theft, and regulatory non-compliance. There is lack of authorized collection centers, especially in smaller cities, and a need to upgrade existing recycling centers with modern, efficient technologies to handle diverse devices. The initial investment costs for advanced robotic and chemical recycling systems can be substantial.

5.2 Recommendations

To overcome these challenges and foster a sustainable e-waste management ecosystem, a comprehensive strategy integrating policy, technology, infrastructure, and behavioural change is essential. Governments, must enhance the quality and fairness of extended producer responsibility (EPR) implementation through robust monitoring, regular audits, and strict enforcement mechanisms. Subsidies, tax incentives, and other economic instruments to producers and formal recyclers are provided to encourage adherence to EPR obligations and investment in environmentally sound practices. To integrate the informal sector training, financial assistance, and simplified registration processes for informal workers and micro-enterprises are prioritized. Partnerships between informal collectors and authorized recyclers/manufacturers in order to ensure traceable, safe, and efficient collection and channelization of e-waste is facilitated. Government-led aggregation and dismantling zones in targeted geographies is established to bring informal operations into a regulated environment. More investment is needed in advanced recycling infrastructure and technology. The adoption of AI-powered sorting systems, robotic dismantling, and advanced material recovery techniques (hydrometallurgy, bioleaching) are encouraged to improve efficiency, accuracy, and worker safety. Funding for innovation in green chemistry and recycling technologies is increased to drive efficiency and minimize environmental impact. Blockchain-based IoT-enabled tracking and tracing systems are implemented to ensure transparency, accountability, and compliance across the ewaste lifecycle. Circular Economy Principles in Product Design and Consumption should be implemented by eco-design mandates, supporting repair and refurbishment, encouraging innovative business models and developing secondary materials market. Public Awareness and Consumer Participation is enhanced by sustained campaigns, convenient collection systems and digital literacy. Data Security is also prioritized by promoting the use of certified IT Asset Disposition (ITAD) services that provide verifiable certificates of data erasure, ensuring compliance and peace of mind. By implementing these recommendations, nations, particularly those with rapidly growing e-waste volumes can move beyond merely managing a waste problem to harnessing a valuable resource, protecting public health, fostering green economic growth, and contributing significantly to a sustainable future.

6. Conclusion

E-waste or electronic waste has emerged as one of the most challenging environmental concerns of the present era. Waste from electrical and electronic equipment has exponentially increased due to the technological innovation and the ever-increasing demand for electronic products in present life. The inadequate electronic waste treatment causes significant environmental and health issues. Many of these products can be reused, refurbished, or recycled in an environmentally sound technique so that they are less harmful to the ecosystem. This paper highlights the hazards of e-wastes, the need for its appropriate management and various options that can be implemented.

References

- [1] Nithya, R., Sivasankari, C., & Thirunavukkarasu, A. (2021). Electronic waste generation, regulation and metal recovery: A review. Environmental Chemistry Letters, 19, 1347–1368. https://doi.org/10.1007/s10311-020-01111-9.
- [2] Gurgul, A., Szczepaniak, W., & Zabłocka-Malicka, M. (2018). Incineration and pyrolysis vs. steam gasification of electronic waste. Science of the Total Environment, 624, 1119–1124. https://doi.org/10.1016/j. scito tenv. 2017. 12. 151.
- [3] Gautam, P., Behera, C. K., Sinha, I., et al. (2022). High added-value materials recovery using electronic scrap-transforming waste to valuable products. Journal of Cleaner Production, 330, 129836. https://doi.org/10.1016/j.jclepro.2021.129836.
- [4] Islam, M. T., & Huda, N. (2018). Reverse logistics and closed-loop supply chain of waste electrical and electronic equipment (WEEE)/E-waste: A comprehensive literature review. Resources, Conservation and Recycling, 137, 48–75. https://doi.org/10.1016/j.resconrec.2018.05.026.
- [5] Atia, T. A., Elia, G., Hahn, R., et al. (2019). Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries. Journal of Energy Chemistry, 35, 220–227. https://doi.org/10.1016/j.jechem. 2019. 03. 022.