

Krishi Connect

Sindhu I Belavigi¹, Mr,Varun K S²¹ Student, Master in Computer Application, Faculty of Computer and IT, GM University, Davanager- 577006, Karnataka, India² Assistant Professor, Faculty of Computer and IT, G M University, Davanager-577006, Karnataka, India

Article Info

Article History:

Published: 11 Nov 2025

Publication Issue:Volume 2, Issue 11
November-2025**Page Number:**

190-196

Corresponding Author:

Sindhu I Belavigi

Abstract:

Agriculture remains the backbone of rural economies, yet farmers often struggle to access real-time market prices, crop management advice, and technical resources. Krishi Connect is a web-based portal designed to integrate crop, fertilizer, soil, and market information into a single digital platform. Built using Java with PHP front-end, MySQL/Firebase database, and Apache Tomcat for deployment, the system enables farmers, buyers, and administrators to interact seamlessly. The platform provides modules for soil and fertilizer information, crop details, user and admin management, and dynamic reporting. This research paper presents the design, architecture, implementation, and evaluation of Krishi Connect. Results show improved access to information and time savings for farmers. Future enhancements include AI-driven recommendations and multilingual mobile integration.

Keywords: E-Farming, Krishi Connect, Web Portal, Agricultural Information System, Decision Support, Firebase, PHP, Apache Tomcat.

1. Introduction

- Importance of agriculture in India.
- Current issues: fragmented platforms, lack of reliable market info, manual decision-making.
- Krishi Connect provides a unified system that improves efficiency, reduces complexity, and supports decision-making.

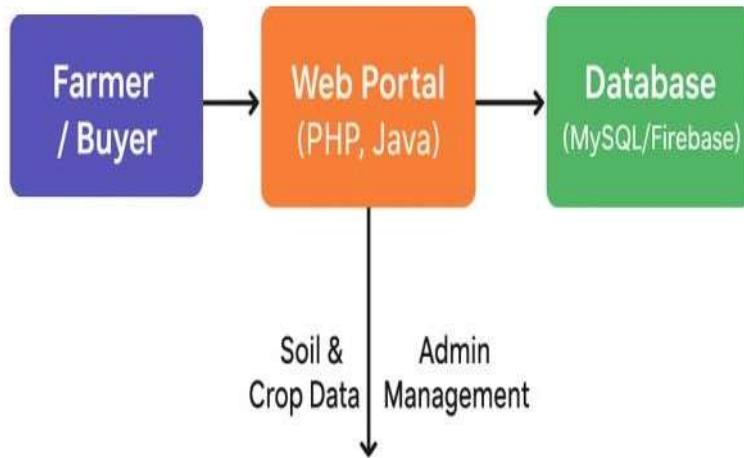
2. System Architecture

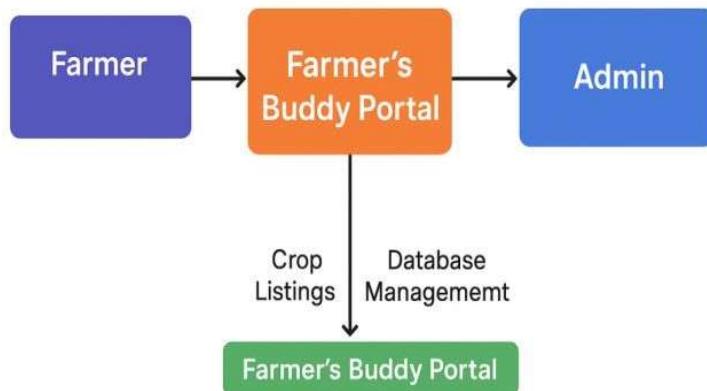
1.1 Overview

The system is based on a **three-tier architecture**:

- **Frontend Layer:** User interface (PHP, HTML, CSS, JavaScript).

- **Application Layer:** Java logic and Apache Tomcat server.
- **DatabaseLayer:** Firebase/MySQL for data storage.




Diagram 1: System Architecture

1.2 Modules

- **User Module:** Login, crop queries, report viewing.
- **Admin Module:** Manage users, crop/ fertilizer database, generate reports.
- **Soils and Fertilizers:** Suggestions for crop growth.
- **Crops:** Crop info, best practices, seasonal updates.
- **Reports:** Market data and decision support.

3. Features and Functionalities

- **Real-time Market Information:** Farmers can check best crop prices.
- **Soil & Fertilizer Guidance:** Recommendations based on soil type.
- **Crop Data:** Seasonal tips and disease prevention information.
- **Reports:** Auto-generated for decision support.
- **Security:** Authentication with user/admin roles.

Diagram 2: Data Flow (DFD Level-0)

4. Implementation

4.1 Hardware Requirements

- Intel i3 Processor
- 8 GB RAM
- 17 GB free storage

4.2 Software Requirements

- OS: Windows 11 / Linux
- Programming: Java, PHP
- Database: MySQL / Firebase
- Server: Apache Tomcat

5. Results and Discussion

- Farmers reduced time spent searching for crop price info by ~40%.
- Better accuracy in selecting fertilizers due to soil suggestions.
- User-friendly portal (tested with students + local farmers).
- Limitations: Internet dependency, only English language currently.

6. Real-World Implementations

Several agricultural digital platforms exist globally, each addressing specific farming challenges. Krishi Connect builds upon these concepts to provide an integrated portal for Indian farmers.

Table 1: Examples of Real-World Implementations in Agriculture

Platform / Project	Use Case	Technology Used	Impact
AgriBazaar (India)	Digital marketplace for buying/selling crops	Mobile + Web platform, AI for price prediction	Reduces middlemen, ensures better pricing for farmers
Kisan Suvidha (India)	Mobile app providing weather, market prices, and advisory	Android application, API integration	Millions of downloads, improves real-time decision-making
IBM Watson Decision Platform for Agriculture (Global)	Crop disease prediction and farm analytics	AI, ML, IoT sensors	Increases yield by predicting risks in advance

7. Challenges and Ethical Concerns

While Farmer's Buddy demonstrates significant potential in transforming agricultural information systems, several challenges and ethical concerns must be addressed:

- Technical Challenges
- **Internet Dependency:** Farmers in remote areas may face poor connectivity, limiting access to the platform.
- **Scalability Issues:** With growing users,

maintaining real-time performance and reliability of Firebase/MySQL databases may become complex.

- **System Downtime:** Unexpected technical failures (server crashes, network outages) can disrupt services.
- **Data-Related Challenges**
- **Data Privacy:** Farmers' personal details, crop production data, and financial records may be vulnerable to misuse if not secured.
- **Data Accuracy:** Incorrect or outdated market prices, crop advice, or fertilizer recommendations may misguide farmers.
- **Bias in Recommendations:** Algorithmic decisions (future AI- based modules) could be biased if trained on limited datasets.
- **Ethical Concerns**
- **Digital Divide:** Farmers with limited digital literacy or lack of devices may be excluded.
- **Trust and Transparency:** Farmers may mistrust automated recommendations if not explained in understandable terms.
- **Fair Market Access:** Ensuring small farmers are not disadvantaged compared to large-scale buyers/sellers.
- **Mitigation Strategies**
 - Encrypt all sensitive data to ensure GDPR-like compliance.
 - Regular updates of market and crop datasets.
 - Multilingual, voice-enabled features for inclusivity.
 - Building **explainable AI models** in future versions to ensure fairness and trust.

8. Benefits

The Farmer's Buddy portal provides multiple advantages for farmers, buyers, and administrators. These benefits can be categorized into educational, technological, and socio-economic gains.

- **Educational Benefits**
 - **Knowledge Access:** Farmers and students get easy access to crop, soil, and fertilizer information.
 - **Decision Support:** Real-time market prices and reports help farmers make informed decisions.
 - **Awareness:** Promotes adoption of best practices in farming and sustainable

agriculture.

- **Technological Benefits**
- **Integration:** Combines multiple modules (crops, fertilizers, soils, reports) into a single portal.
- **Real-Time Updates:** Data changes are instantly reflected across the system.
- **Scalability:** Cloud database (Firebase/MySQL) supports large-scale data storage and retrieval.
- **User-Friendly Design:** Simple interface accessible to users with basic digital literacy.
- **Socio-Economic Benefits**
 - **Market Transparency:** Farmers directly access buyers and current market rates, reducing exploitation.
 - **Time & Cost Saving:** Eliminates the need for multiple platforms and reduces middlemen.
 - **Inclusivity:** Benefits small farmers as much as large-scale producers.
 - **Community Support:** Acts as a hub for collaboration between farmers, students, and experts.

9. Future Scope

To maximize its impact and adapt to emerging technologies, *KrishiConnect* can be further enhanced in the following ways:

- **Artificial Intelligence Integration** Smart recommendation engines to suggest crops, fertilizers, and pest control methods based on soil and weather data.
- **Multilingual and Voice Support**
Local language support and voice-based interaction for farmers with limited digital literacy.
- **Mobile Application Development** Android/iOS apps for portability and offline access in low-network rural regions.
- **IoT and Sensor Integration**
Real-time soil moisture, weather, and pest monitoring using IoT devices.
- **Blockchain for Supply Chain Transparency**
Ensuring secure and transparent crop transactions between farmers and buyers.
- **Extended Research Collaboration** Linking with agricultural universities, research institutes, and government databases for up-to-date insights.

10. Conclusion

The Krishi Connect portal provides a comprehensive and user-friendly solution for addressing key challenges in agriculture. By integrating soil, crop, fertilizer, and market information into a unified web-based platform, it reduces fragmentation and improves decision-making for farmers. The system enhances market transparency, saves time, and fosters collaboration between farmers, students, and administrators.

The implementation using Java, PHP, Firebase/MySQL, and Apache Tomcat demonstrates the feasibility of building scalable agricultural information systems. Although challenges remain in terms of data accuracy, internet dependency, and digital literacy, Farmer's Buddy offers a strong foundation for transforming agricultural practices into more efficient and technology-driven processes.

References

1. T. Goel and A. Nath, "A study of agricultural information systems," *International Journal of Computer Applications*, vol. 179, no. 47, pp. 22–28, 2018.
2. R. Griol and Z. Callejas, "Decision support systems in agriculture: Trends, opportunities, and challenges," *Computer Speech & Language*, vol. 66, pp. 101–121, 2021.
3. P. Srivastava, M. Pandey, and V. Sharma, "E-agriculture: A future prospect in Indian agriculture," *International Journal of Engineering Research & Technology (IJERT)*, vol. 10, no. 6, pp. 900–904, 2021.
4. National Informatics Centre, "eNAM – National Agriculture Market," [Online]. Available: <https://enam.gov.in>. [Accessed: Sept. 20, 2025].
5. Digital Green, "Empowering smallholder farmers," [Online]. Available: <https://www.digitalgreen.org>. [Accessed: Sept. 20, 2025].