

Recent Advances in Microbiology (2020–2025): Multi-Omics Integration, AMR Threats, and AI-Based Microbial Surveillance

Bansi Jhansi Rani¹, Anitha²¹ Scholor, Department of Microbiology, Malla Reddy University, Hyderabad, Telangana, India² Department of Microbiology, SR&BGENR, Khammam, Telangana, India**Article Info****Article History:**

Published: 30 Nov 2025

Publication Issue:Volume 2, Issue 11
November-2025**Page Number:**

524-530

Corresponding Author:

Bansi Jhansi Rani

Abstract:

The Microbiology has changed rapidly in the last five years due to major progress in genomics, artificial intelligence (AI), next-generation sequencing, and synthetic biology. Growing threats such as antimicrobial resistance (AMR), climate-driven changes in pathogens, pandemics, and environmental pollution have pushed researchers to develop better tools for microbial detection, surveillance, and functional analysis. This review highlights the latest advances in microbiology between 2020 and 2025. Key topics include metagenomics, microbiome research, genome engineering, AI applications, wastewater epidemiology, one-health surveillance, and rapid diagnostics. The growing use of multi-omics and computational biology is reshaping how microbes are studied. The paper also identifies important research gaps and offers directions for future work.

Keywords: Metagenomics, Artificial Intelligence in Microbiology, Multi-Omics Integration, Antimicrobial Resistance, Rapid Diagnostics.

1. Introduction

Microbiology has become one of the most dynamic scientific fields because of its impact on human health, agriculture, the environment, and biotechnology. The COVID-19 pandemic accelerated global research in viral genomics, epidemiology, and vaccine development [1]. At the same time, the rise of AI, computational tools, and portable sequencing devices has created new opportunities for studying complex microbial systems [16].

The present decade marks a strong shift toward data-driven, multi-omics, and systems-level microbiology. This review discusses major research trends with focus on:

- Microbiome science and metagenomics
- AMR mechanisms and global surveillance
- AI and machine learning for microbial prediction
- CRISPR and synthetic biology
- Environmental and wastewater microbiology
- Next-generation diagnostics
- Phage therapy and alternative antimicrobials
- Industrial and bioenergy microbiology

2. Methodology of Review

This paper is a narrative review based on peer-reviewed articles published from 2020–2025 in journals such as *Nature Microbiology*, *Cell Host & Microbe*, *Frontiers in Microbiology*, *Lancet Microbe*, and *Trends in Microbiology*. Additional sources include preprints, authoritative reports from WHO, CDC, and major microbiome consortia [17].

3. Latest Trends in Microbiology

3.1 Microbiome Research and Multi-Omics Integration

Microbiome research has moved beyond identifying microbes to understanding what they actually do [7]. Modern metagenomic sequencing helps profile microbial communities at very high resolution. Multi-omics tools like metatranscriptomics and metabolomics allow scientists to explore metabolic pathways, ecological networks, and host–microbe interactions [3].

Recent progress includes:

- Using shotgun metagenomics and metabolomics for deep ecological insights
- Linking microbiome imbalance with diseases such as diabetes, cancer, autoimmune disorders, and neurological conditions
- Machine-learning tools for fast microbial classification
- Growing interest in microbiome-based therapies

Despite progress, there is still a need for standard protocols and better tools to translate research findings into clinical practice.

Importance: Microbiome modulation is now being explored as next-generation therapy.

3.2 Antimicrobial Resistance (AMR) and Resistome Analysis

AMR remains a major global threat. Research now follows a One-Health approach, studying AMR in humans, animals, and the environment. Metagenomic tools help detect resistance genes and track their spread through plasmids, phages, and other mobile genetic elements [2].

Key focus areas include:

- Monitoring AMR genes in wastewater, soil, and hospitals
- AI-based prediction of resistance patterns
- Discovery of new antimicrobial peptides using machine learning
- CRISPR-based strategies to target resistant bacteria

Wastewater and environmental samples are increasingly being used as early-warning systems for AMR surveillance [4].

Trend: Wastewater and soil microbiomes are increasingly used as AMR surveillance reservoirs [11].

3.3 Artificial Intelligence and Machine Learning in Microbiology

AI has become an essential tool in modern microbiology. Machine learning supports rapid pathogen identification, AMR prediction, outbreak forecasting, and metagenomic data analysis [5]. Deep learning models can analyse huge genomic datasets with high accuracy [8].

Applications include:

- Automated genome annotation
- Early detection of disease outbreaks
- Prediction of AMR using deep learning
- Analysis of microbial interaction networks
- Modelling microbial communities

Current challenges include data quality, model transparency, and avoiding bias. Research is moving toward more explainable and reliable AI systems.

3.4 Innovations in Clinical Microbiology & Diagnostics

Clinical diagnostics have changed greatly since the COVID-19 pandemic. New technologies are making pathogen detection faster and more accessible.

Major developments include:

- Portable point-of-care molecular tests
- Real-time sequencing (e.g., Oxford Nanopore)
- CRISPR-based diagnostic tools such as SHERLOCK and DETECTR
- Improved MALDI-TOF applications
- AI-based image analysis for microbial identification

The goal is to create diagnostics that are quick, accurate, and suitable for low-resource settings.

3.5 Wastewater-Based Epidemiology (WBE)

Environmental microbiology research is increasingly focused on microbial responses to climate change, pollution, and anthropogenic activities. Wastewater-based epidemiology (WBE) has emerged as a predictive surveillance tool for detecting viruses, AMR genes, pharmaceuticals, and chemical pollutants [12]. Current studies emphasize *microbial community shifts under environmental stress, biodegradation pathways, and bioindicator development*. Research gaps include improving sensitivity of WBE for low-abundance pathogens and establishing standardized sampling and analytical protocols across regions [18].

Wastewater surveillance gained global importance after COVID-19.

Emerging uses:

- Detection of viruses (SARS-CoV-2, polio), bacterial pathogens
- Monitoring AMR spread
- Environmental impact assessment

- City-level outbreak forecasting

WBE is now a standard tool in public health monitoring.

3.6 CRISPR and Synthetic Biology

Advances in diagnostic microbiology have enabled faster, more sensitive detection of pathogens and resistance markers. Technologies such as nanopore sequencing, CRISPR-based diagnostics, microfluidic platforms, and AI-assisted imaging offer near-real-time results [9]. Research is now focused on *ultra-rapid point-of-care diagnostics*, *phenotypic AST innovations*, and *complete genomic profiling directly from clinical samples* [19]. Key challenges include affordability, accessibility in low-resource settings, and integration with electronic surveillance systems [10].

CRISPR-Cas systems have revolutionized genome editing.

New trends:

- Engineering microbes for drug delivery
- CRISPR-based antimicrobials targeting AMR genes
- Gene drives for vector control
- Synthetic microbial consortia for industry and environment

Synthetic biology links microbiology with biotechnology and engineering.

3.7 Phage Therapy and Post-Antibiotic Alternatives

Research on phage therapy has gained renewed attention as a viable solution to counter rising antimicrobial resistance. Bacteriophages offer species-specific and self-amplifying antimicrobial activity, making them promising alternatives to conventional antibiotics. Recent studies focus on *phage–host interactions*, *engineered phages* with CRISPR systems, and *phage-derived endolysins* capable of targeting resistant pathogens. Combination approaches, such as phage–antibiotic synergy and phage cocktails, have shown enhanced efficacy against multidrug-resistant (MDR) bacteria [20]. Clinical translation, however, requires standardized manufacturing, regulatory frameworks, and robust clinical trial data. Alongside phages, other post-antibiotic interventions—such as antimicrobial peptides (AMPs), probiotics, microbiome modulation, and anti-virulence therapies—represent expanding research avenues aimed at reducing selective pressure and limiting resistance development.

Phage therapy is re-emerging due to AMR concerns.

Recent advances:

- Personalized phage cocktails
- CRISPR-enhanced lytic phages
- Combination therapy (phage + antibiotics)
- Regulatory approvals for compassionate use cases

Phages are also used in agriculture to reduce chemical pesticide dependency.

3.8 Environmental and Climate-Driven Microbiology

Environmental microbiology is increasingly shaped by climate change, pollution, and anthropogenic stressors that influence microbial ecology and biogeochemical cycles. Rising temperatures, altered precipitation, and extreme weather events are driving shifts in microbial communities, promoting the emergence and distribution of new pathogens. Climate-driven changes in soil and aquatic microbiomes also influence nutrient cycling, carbon sequestration, and greenhouse gas emissions. Current research emphasizes *microbial climate resilience*, *pathogen evolution under environmental stress*, and *microbiome responses to pollutants*, including plastics, heavy metals, and pharmaceuticals. High-throughput sequencing and remote sensing technologies are enabling more precise mapping of climate-sensitive microbial functions. Understanding these dynamics is crucial for forecasting disease outbreaks, managing ecosystem health, and improving environmental sustainability policies [13].

Climate change is altering microbial ecosystems.

Hot research areas:

- Arctic melting and emergence of ancient microbes
- Impact of rising temperatures on pathogen evolution
- Microbial role in carbon cycling and greenhouse gas reduction
- Microbes for bioremediation of heavy metals and plastics

3.9 Industrial and Bioenergy Microbiology

Industrial microbiology is undergoing rapid transformation due to advances in synthetic biology, metabolic engineering, and systems biotechnology. Microbes are now genetically optimized to produce a wide range of industrially relevant compounds, including biofuels, bioplastics, enzymes, pharmaceuticals, and value-added chemicals. Bioenergy microbiology focuses on optimizing microbial consortia for *bioethanol*, *biogas*, *microbial fuel cells*, and *algal bioenergy systems* [14]. Recent research highlights the use of *genome-scale metabolic models*, *adaptive laboratory evolution*, and *CRISPR-based pathway optimization* to enhance microbial productivity and stress tolerance. Additionally, circular bioeconomy initiatives are promoting the conversion of agricultural waste, municipal waste, and lignocellulosic biomass into renewable energy through microbial processes. Key challenges include improving process scalability, reducing production costs, and ensuring biosafety of engineered strains in large-scale bioprocessing [21].

Microbes are central to sustainable bioprocesses.

Trends:

- Microbial fuel cells
- Biohydrogen and bioethanol production
- Enzyme engineering for industrial catalysis
- Microbes for biodegradable plastic production

4. Discussions

Modern microbiology is increasingly shaped by the combination of computational tools, molecular techniques, and engineering approaches. AI, multi-omics integration, and genome editing technologies are allowing researchers to explore microbial systems with high accuracy [20]. Despite rapid progress,

challenges remain. Standardized microbiome protocols, fair access to diagnostics, safe use of engineered microbes, and improved global AMR surveillance are important areas requiring further attention [15].

5. Future Directions

Future research is expected to focus on:

- Unified global microbiome databases
- AI-based early-warning systems for outbreaks
- Advanced AMR therapies using phages and engineered microbes
- Linking microbiology with climate modelling
- Personalized microbiome-based treatments
- Large-scale simulation of synthetic microbial communities
- Low-cost field-ready diagnostics

6. Conclusion

Microbiology is undergoing fast and significant growth driven by new technologies and global health needs. Advances in metagenomics, multi-omics, AI-based tools, and rapid diagnostics have improved our ability to detect and understand microbial systems. CRISPR and synthetic biology are creating new opportunities in therapy, environmental management, and industrial biotechnology [6].

Growing efforts in AMR surveillance, genome monitoring, and wastewater analysis are improving public health responses. In the coming years, microbiology will become even more interdisciplinary and data-driven, working closely with climate science, public health, and environmental research. This combined approach will be essential for tackling global challenges such as AMR, climate-driven pathogen emergence, and sustainable bioenergy development.

References

1. Aziz, Tariq, et al. "Metagenomic Meta-Analysis of Antibiotic-Resistance Genes in Wastewater: A Perspective from the COVID-19 Pandemic." *Water*, vol. 16, no. 24, 2024, pp. 1–18.
2. Singh, R., et al. "Metagenomics Based Longitudinal Monitoring of Antibiotic Resistome and Microbiome in the Inlets of Wastewater Treatment Plants in an Indian Megacity." *Science of the Total Environment*, vol. 936, 2025, pp. 1–12.
3. Zhang, H., et al. "Metatranscriptomic Time Series Insight into Antibiotic Resistance Genes and Mobile Genetic Elements in Wastewater Systems under Antibiotic Selective Pressure." *BMC Microbiology*, vol. 25, 2025, pp. 1–15.
4. Kumar, A., et al. "From Wastewater to Resistance: Characterization of Multidrug-Resistant Bacteria and Assessment of Natural Antimicrobial Compounds." *Frontiers in Microbiology*, vol. 16, 2025, pp. 1–12.
5. Gupta, P., et al. "Antibiotic Resistance: Global Health Crisis and Metagenomics." *Biotechnology Reports*, vol. 30, 2021, pp. 1–9.
6. Lee, J., et al. "Advances in Metagenomic Sequencing for Infectious Disease Management: From Pathogen Profiling to Antibiotic Resistance." *Journal of Microbiology and Infection*, vol. 12, no. 4, 2024, pp. 45–58.

7. Brown, L., et al. "Metagenomics: A New Frontier for Routine Pathology Testing of Gastrointestinal Pathogens." *Gut Pathogens*, vol. 17, 2025, pp. 1–13.
8. Chen, Y., et al. "A Bibliometric Analysis of Artificial Intelligence Techniques in Bacteriology: A PRISMA-Guided Review." *Frontiers in Microbiology*, vol. 16, 2025, pp. 1–21.
9. Li, X., et al. "Recent Advances in CRISPR-Cas Technologies for Synthetic Biology." *Journal of Microbiology*, vol. 61, no. 3, 2023, pp. 215–229.
10. Martins, D., et al. "Microbes in the Spotlight: The Latest in Microbiology Advancements." *Advances in Biotechnology and Microbiology*, vol. 20, no. 4, 2023, pp. 45–52.
11. Patel, R., et al. "Genome-Resolved Metagenomics Uncovers Antimicrobial Resistance Gene Carriers in Hospital and Municipal Wastewater Environments." *Science of the Total Environment*, vol. 945, 2025, pp. 1–14.
12. Hassan, M., et al. "The Interplay Between Antimicrobial Resistance Genes and Emerging Contaminants in Wastewater Treatment Plants: A One-Health Perspective." *Annals of Microbiology*, vol. 75, 2025, pp. 1–11.
13. Jones, S., et al. "Inferring Diet, Disease and Antibiotic Resistance from Ancient Human Oral Microbiomes." *Microbial Genomics*, vol. 10, no. 5, 2024, pp. 1–14.
14. Rossi, G., et al. "Metagenomic Approaches for Exploring Antimicrobial Resistance in Uncultivated Microbiota." *Frontiers in Microbiology*, vol. 16, 2025, pp. 1–5.
15. World Health Organization. *GLASS: Global Antimicrobial Resistance and Use Surveillance System Report*. WHO, 2023–2025.
16. Aziz, Tariq, et al. "Tracking The Scientific Landscape Of Nvironmental Impacts On Respiratory Disorders: A Bibliometric Analysis." *International Journal of Pharmacy Research & Technology (IJPRT)* 15.2 (2025): 2648–2691.
17. Dubey, Vineet, Nada Reza, and William Hope. "Drug-resistant *Acinetobacter baumannii*: mortality, emerging treatments, and future pharmacological targets for a WHO priority pathogen." *Clinical Microbiology Reviews* 38.3 (2025): e00279-24.
18. **Cell Host & Microbe.** *Cell Press*, 2023–2025. (Journal featuring reviews and articles on host–microbe interactions.)
19. **Frontiers in Microbiology.** *Frontiers Media S.A.*, 2023–2025. (Open-access journal covering microbiome, AMR, and microbial ecology research.)
20. **World Health Organization.** *Global Antimicrobial Resistance and Use Surveillance System (GLASS) Reports*. WHO, 2023–2025. (Annual global AMR surveillance reports.)
21. **Lancet Microbe.** *The Lancet Publishing Group*, 2023–2025. (Research journal focusing on emerging pathogens and microbial threats.)